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A MODEL OF A NON-HOMOGENEOUS PSEUDOFLUIDIZED LAYER WITH 

PARTICLE EXCHANGE BETWEEN THE NON-HOMOGENEITY AND THE LAYER* 

N.N. BOBKOV and YU.P. GUPALO 

A non-stationary model of a non-homogeneous pseudofluidized layer with 
local solid-phase non-homogeneities moving in the continuous layer /l/ 
is considered. Contrary to the previous studies /l, 2/, we assume that 
the solid-phase mass locked in the spherical packet of particles 
modelling the non-homogeneity may vary through the influx of particles 
into the packet or efflux of particles from the packet into the 
continuous phase of the layer. Particle concentrations inside and 
outside the packet remain constant. We assume that the solid-phase 
density is high compared with the density of the fluidizing agent (e.g., 
solid particles suspended in a gas stream), and the interaction between 
the phases is linear with respect to the relative velocity of the 
particles. In this formulation, the problem is similar to the growth 
(dissolution) of bubbles in a liquid and of drops in a liquid or a gas 
/3-51. 

The purpose of the study is to derive a system of equations linking 
the dynamics of the local solid-phase non-homogeneity with the velocity 
of its motion in the pseudofluidized layer. Packet "lifetime" is 
estimated. Some examples are considered. 

1. Statement of the problem. We introduce a non-inertial spherical system of coordinates 
attached to the centre of a packet of radius a(t) with the polar axis aligned in the direction 
of the vector of gravitational acceleration (Fig.1); the velocity of the packet in the labora- 
tory system @l~, is U,(t). In the light of the assumptions listed above, using a model of 
interpenetrating ideal fluids, we write the system of equations of motion and continuity of 
the fluid and solid phases inside and outside the packet: 

I’ >a (t), v (r. t)-w (r, t)= -k (E) V pf (r, t) (1.1) 

Vv b, t) =O. d,p lf3/8t+w (r, t) VI w (r, t)= 

-v [Pj (r. t) + Ps (r.r t)] r+ d,PUd' (t) g/g+ 
d&z 

rw (r. t) = 0, e + p = 1 

I' < a(t), Y' (r, t) - w' (r, t) = 
--li' (E') Gpt' (r, t) 

To' (r, t) = 0, d,p' la/at + w' (r, t) T] w' (r, t) = 
- V h’ (r3 t) + A (r, 01 t d,p'U,' (t) g/g + d,p'g 

rw' (r, t) = 0, E' + p' = 1. Ud (t) = 1 ud (t) 1 

Fig.1 

Here v, w, Pt, ps, E, P are the locally averaged velocities, pressures, and volume concentrations 
of the fluidizing agent (of density dt) and the dispersed solid particles (of density d,, 
dfld, < 1) , respectively, k (s) is the perviousness of the pseudofluidized layer and g is the 
gravitational acceleration. The prime denotes the parameters of the two-phase flow inside 
the packet. The inertia forces acting on a unit solid-phase volume in the non-inertial co- 
ordinate system are proportional to +U,' (t) and are allowed for in the third and seventh 
equations in (1.1). Here and in what follows, unless otherwise specified, the top sign cor- 
responds to a rising packet (p'< p) and the bottom sign to a sinking packet (p'> p). 

In the non-inertial coordinate system, the boundary conditions on the moving surface of 
the packet are written for the axisymmetric case in the form /l/ 
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r = a (t), p (w, - D,) = p’ (w,’ - D,), e (u, - D,) = 
E' (U,’ - Dr) 

Pf = Pf’, Pa’ - ps = & [P (w, - DJ2 - P’ (IO,’ - DJ21 
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(1.2) 

The first two equations are expressions of flux conservation of solid and fluid phases 

at the discontinuity; the last two equations are the balance conditions of the normal stresses 
in the fluid and solid phases, respectively. In (1.2), D is the velocity of motion of the 
discontinuity (the packet surface) in a coordinate system attached to the packet centre. The 
equation of the discontinuity surface in this system has the form F (r, 0, 'p, t) = r - a (t) = 0. 
Therefore, D = -i, (aFiat)/ 1 VF 1 = i,a' (t), where i, is the unit vector in the radial direction. 
Hence D, = a' (t). 

In what follows, we assume that the dispersed-phase particles in the internal flow region 

I‘< a(t) (i.e., the particles which at the current instant of time are enclosed by the packet 
boundary) are at rest relative to the boundary, i.e., w,'I_,(~) = 0. At the same time, the 

velocity of the dispersed phase normal to the boundary w, &r) is non-zero outside the packet 
and it determines the rate of "growth" and "dissolution" of the packet in the ambient layer. 
This assumption implies that there are no solid-phase sources (sinks) inside the packet, whose 
density is constant. 

Under these assumptions, the surface density of the dispersed-phase concentration dis- 
continuity is thus constant, and the discontinuity mass increases for a growing packet and 
decreases for a dissolving packet. In the model previously conisdered /l/, the surface density 
of the discontinuity varied due to variation of the packet size, with the packet mass remaining 
constant (W ILw = 14 La&. 

Using our assumption and the expression for the velocity of the discontinuity D, we 
rewrite conditions (1.2) in the form 

r = a (t), p (a’ - w,) = p’a’, E (u, - a’) = E’ (u,’ - a’) 

Pf = Pf’, PSI - Pa = a, tp (W, - a')2 - p'c.21 = 

- d,p'w,a' = d,p'a'2 (p’lp - 1) 

(1.3) 

The boundary conditions (1.3) on the packet surface should be supplemented with flow 
homogeneity conditions of the fluid and solid phases far from the packet and the conditions 
of bounded flow velocities throughout the entire region. 

2. VeZocity fields and pressure distribution of the phases inside and outside the packet. 
Consider the case when the flow of the solid phase outside the packet is potential, i.e., 

w (r. t) = VT, (r, t), where (~.(r, t) is the velocity potential. From the fourth equation in 
(1.1) it follows that the potential is a harmonic function at each instant of time 

and it satisfies the conditions 

&a (rr 4 = 0 (2.2) 

b (r, War La(t) = w, (r, t) La(t) = a’ (4 (1 - p'lp) 

r--f m, Vs (r, 4 + (P8' (r, 0 

(2.2) 

where cp,“(r, t) is the potential of the ideal fluid flow past a sphere of variable radius a(t) 
which is homogeneous at infinity. 

The solution of problem (2.1), (2.2) has the form 

(2.3) 

From the continuity equation of the solid phase inside the packet we conclude that the 
vector w'(r, t) is solenoidal and the stream function %' (r, t) can be introduced for the 
internal flow in a standard way: 

w,’ (r, t) = ’ W ’ Cr. t) a* ’ (r. t) 
r%sin 0 + , w’(r, t) = - & + 

Taking the curl of both sides of the equation of motion of the solid phase inside the 
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packet, we obtain the following equation for the stream function describing internal flow (0% 
is the Stokes operator): 

Below we will consider the simplest partial solution of Eq.(2.4) q9' (r, t) = eonst, which 
corresponds to the case when the particles are at rest inside the packet: 

)'< a (t), w' (P, t) = 0 (2.5) 

The solid phase slips through the porous body boundary r< a(t), so that %a Ir=a(o f- 0. 

Let us now determine the pressure fields of the solid and fluid phases. Applying the 
divergence to the equations of fluid-phase motion and using the equations of continuity, we 
obtain for the corresponding pressures inside and outside the packet 

r > a (t), Ap_Pt (r, t) = 0; r < a (t), Apf’ (r, t) = 0 (2.6) 

The solutions of Eqs‘(2.6) must satisfy the second and fourth conditions (1.3) an the 
packet surface. Moreover, by the homogeneity of the layer far from the packet, the pressure 

Pf (r. $1 should satisfy the condition Q (r, s)& jp--rrn = --v,!k (E) (v. is the pseudofluidization 

rate and y = -rcos @ is the vertical coordinate), and due to bounded velocities of the phases 
inside the packet Ipf’(r, t) I< cc. 

The solution of the first Eq.12.6) can be represented as a series in Legendre polynomials 

Pf (r, t) = ~rcos0 -r 
k (8) 

3, (t) P,_1 (co9 A) rTzwbl (t) i- Pfm (t) 

w=, 
(2.7) 

Here pf- (t) is the fluid-phase pressure in the equatorial. plane of the packet at a large 
distance. 

A similar expansion for the function pf’(r, t). without singularities for r<a(t) can 
represented in the form Ipj(r, t) I< 0~. 

pi (T, t) = &A, (t) Y, (~0s 91 al-n (t) r” 

be 

The unknown coefficients B,(t), A,(t) in relationships (2.7) and (2.8) should be deter- 
mined from the boundary conditions. 

The pressure distribution of the fluidizing agent in the entire flow region has the form 

In the stationary approximation, s,(t) = 0 and our expressions are identical with those 
of /2/. 

The velocity fields of the solid phase are determined from relationships (2.9), (2.3) 
and the corresponding equations of motion in the form v (r, t) = w (r, 1) - k (a) V pf (T, t), or in 
coordinate form 

Similarly, v'(r. t) = -Iz' (E') Opt' (r, t) or 

u,'(0) = ---&I Z&e$kl ~0~8, s Ek 
&a 03 = 3% 2ekie'k' sin0 (2.1%) 
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Expressions (2.11) describe the homogeneous steady flow of the fluid phase ( v’ ( = 3u,ck’ 
(2ek + E’k’)-i filtering through the packet interior from the bottom upwards, irrespective of 
whether the packet is rising (p'(p) or sinking (p' > p). 

Let us now consider the pressure fields of the dispersed phase inside and outside the 
packet. In the external flow region, the equation of motion of the solid phase has a Cauchy- 
Lagrange integral in the form 

d,pc%, (r, t)iat + 'i,d,PW2 (r, 2) + 

pf (r, t) + pS (I, t) - 4~ IkVd’ (4/g + 11 gr = 

'/,d,PUd' (t) + Pf- (t) + Psm 

(2.12) 

From (2.12) we obtain the pressure distribution of the solid phase outside the packet 

(r > a (t)) 

P. (r. t) = l/,&p IUd2 (t) - wz (r, t)l - 

d,pW (r.r Vdt + pfm (t) + p8oD - 

Pf (r, t) + d,p L&U,’ (t)/g + 11 gr 

(2.13) 

In (2.12) and (2.131, pIm is the pressure of the dispersed phase in the homogeneous 
layer region far from the packet; the velocity potential 'Pi (r, t) is determined by (2.3). 

Thus, the pressure distribution pa (r, 4 on the surface of the packet is given by 

pS (r. t) La(t) = ‘i&p IV2 (4 - 

am2 (t) (1 - P'/P)~ - #il sin20Ud2 (t)l - 

d,p L&V&,’ (t) a (t) cm 0 r+ V2Ud (t) a’ (t) cos 8 - 
2 (1 - p’ip) a.2 (t) - (1 - p’/p) a (t) a** @)I + 

(2.14) 

pfm (t) + pSm - pt (I, t) L(t) L 

d,p IIU,’ (t)ig + 11 ga (t) cos 6 

The equation of motion of the disperse phase inside the packet for w‘ = 0 also has a 
Cauchy-Lagrange integral in the form 

ps’ (r, t) = -pi (r, t) + d,p’ k!SJ~ (Wg + 11 gr + pSo’ (t) 

whence we obtain for the pressure distribution on the surface of the packet 

(2.15) 

pa’ (I, 1) IL(t) = -pf’ (r, t) La(t) i 

d,p’ I&U,’ (t)!g + 11 ga (t) cos 6 + pso’ (t) 

(2.16) 

The function pso’ (t) in (2.15) and 12.16) is defined by the condition Pa' (r, t) 1~~ = 0, 
which, combined with the second equality in (2.91, gives the relationship 

pm’ (t) = - (W’a (t) a’ (t) + pfm (t) 

3. The velocity of the packet and the evolution of the packet size. The need to satisfy 
condition (1.3) for the dispersed-phase pressure jump globally along the entire packet boundary 
contradicts the assumption of a spherical packet shape. Following the Davies-Taylor procedure 
/6/, we restrict the analysis to the sections of the packet surface that are immediately 
adjacent to the frontal critical point (r=a(t), 8=n for a rising packet and r=a(t), e=o 
for a sinking packet), where condition (1.3) can be satisfied locally. To this end we take 
sin2 e le+, n = 6 and therefore cos0 = fl+ 612 -t O(P). Retaining terms of the zeroth and first 

order in the expansion of the dispersed-phase pressure discontinuity on the packet boundary 
in powers of 6 and using relationships (2.14), (2.15), we obtain a system of ordinary dif- 
ferntial equations 

‘i, (h - 1) (3 - h) a.2 (t) + (h - 1) a (1) a” (t) - 

p,J(d,p) + ‘/&ud’ (t) = a (t) a’ (W(EJvd,) 

3i@’ (t) ud (t) + ‘/,a (t) ud’ (t) (I -t 2h) + 

~lCIJd~ (t) = i (lb - 1) ga (t), h = p’Ip 

(3.1) 
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connecting the 
racket size a' 

velocity of the packet in the layer U,(t) with the rate of change of the 
’ (t). In the limiting case h = 0 (no particles inside the packet), Eqs.(3.1) 

are identical in the linear phase interaction approximation with the corresponding equations 
of motion and growth previously obtained for a bubble /7/. 

Eqs.(3.1) have a steady-state solution 

which in the limit as h-+0 corresponds to the results obtained in 17, 0/. 
From (3.2) it follows that the steady-state velocity of the packet is independent of the 

particle concentration inside the packet, whereas the steady-state packet size essentially 
depends on the relative packet density h and may vary over a wide range: 

For any G,> max {I, p/(1 - p)} , both thin and dense packets with relative densities 
given respectively by 

hr, = (a* - l)&+ and h,, = (ti* -+ 1)/u * 

have the same steady-state radius a,. 
For a bubble, the steady-state is known to be unstable /7, S/, i.e., for a(d)> a, the 

bubble grows (a'(t)>O) and for a (t) < a, it collapses (a'(t)< 0). We naturally expect to 
obtain the same results for a packet of particles. 

Eliminating U,(t) from Eqs.(3.1), we obtain the following equation describing the 
evolution of a three-dimensional packet in our model: 

a-‘+_4_ &) -+ - (, <h&y12) $ - * a” + 

21 a' 3(3--h) a.3 
2(1+2h)(h-l) 7-l+zh-;;"-+ 

63 
4(1 $ 25)(1- h) a* [ 

1 -+(h - 1)aa" -+(h - I)(3 - h)a'* + 

+flaa.ll"[ f@ - 1)a - 1 + -+(h. -1)aa" $- 

+(b-l)(Y-~)a*B-+qaa'], A#1 

(3.3) 

Here we use dimensionless variables relative to the following scales: length aab = 'l,ip,,l(d,pg) 
(the steady-state bubble radius) and time t, = v, (a*,ig)“*. The same symbols are used to denote 
the dimensionless packet radius and dimensionless time. The dimensionless parameter n charac- 
terizes the ratio of time macroscales and microscales of non-stationar,ity, C,~l150 is the 
Ergan constant and z0 is the relaxation time of the velocity of a solid particle with density 

d, and radius aP in a viscous gas of density 4 and kinematic viscosity v, in the Stokes 
approximation. 

The ordinary differential Eq.(3.3) corresponds to a third-order dynamic autonomous system, 
which may be investigated by the general methods of the theory of non-linear oscillations /9, 
lO/. From (3.3) it follows that the motion of the representative point in phase space (a,a', a") 
of the system is restricted to the region where 

1 - 4/, (h - 1) aa"- ),!, (h - 1) (3 - h) ae2 + */,naa' > 0 

The motion of the phase point on the boundary of this region corresponds to unsteady 
evolution of an immobile (U, = 0) packet of particles in the layer. From the second equation 
of (3.1) it follows that this case is realizable only for I=1, i.e., when the volume con- 
centrations of the solid phase inside and outside the packet are equal, which corresponds to 
the absence of inhomogeneity in the layer. 

Let us linearize Eq.(3.3) near the steady-state solution, setting a(t)= a*+ A(t), where 
A (t) is a small deviation of the dimensionless packet radius from the equilibrium value 
a, = f ll(h - 1). 

The linear approximation equation has the form 

(3.4) 
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In the limiting case when h = 0 (p' = 0) , relationship (3.4) is identical with the previous 
equation /I/ that describes the evolution of a bubble near equilibrium in the linear phase 
interaction approximation. 

The characteristic polynomial of Eq.(3.4) is unstable for all h. In particular, for 
h<i it has precisely one positive root. This means that, as for a bubble, the steady-state 
of a particle packet with any relative density h. is unstable: for a>a, there is a regular 
inflow of the dispersed phase from the layer into the packet and its mass increases; for a< a, 
the particles escape into the layer and the packet "dissolves". 

4. Evotution of a tuo-dimensbnat circular packet of particles in a pseudoftuidieed layer. 
The problem of the motion of a spherical packet of particles in a pseudofluidized layer 

may be extended to the case of a cylindrical packet. As previously, we consider the simplest 
case when there is no relative motion of dispersed-phase particles comprising the inhomogeneity 
(condition (2.5)). The surface densities of particles outside and inside the packet are equal 
to the corresponding volume densities p and p' /ll/. 

An essential difference between the plane and the three-dimensional case is the non-unique 
solvability of the corresponding boundary-value problems. This necessitates supplementing 
the equations of packet motion, similar to Eqs.(3.1), with additional conditions in order to 
ensure unique solvability. 

As in the three-dimensional case, the flow field of the dispersed phase outside the 
packet is described by Eq.(2.1) with boundary conditions (2.2). The solution of problem (2.1), 
(2.2) has the form 

‘pa (r, t) = +Ud (t) [r + a* (t)lrl cos 0 + 

a (t) a’ (t) (1 - A) In (r/L (t)) 
(4.1) 

Here L(t) is an arbitrary function of time having the dimensions of length, which does not 
vanish anywhere in its domain of definition. The velocity field w (r, t) is obviously in- 
dependent of L(t). 

The pressure distribution of the fluid phase outside and inside the packet is described 
in our model by the harmonic functions pf (r. t) and Pi (r, t) (see (2.6)), which in the 
plane problem are sought in series form (r and 0 are the cylindrical coordinates) 

pf (r, t) = -EL 
k @) 

rc0se-f [A,(t)cosn6 + B,(t)sin no] + 
n=1 

(4.2) 

C 0) In * + Pf- 0) 

p,’ (r, t) = 2 al-” (t) PIA,’ (t) cos nl3 -j- B,,'(t)sin ne] 
“-0 

Imposing the boundary conditions (1.3) on (4.2), 
An’ (t), B,’ (t), C (t) 

we determine the coefficients A,,(t), B,,(t), 
and finally obtain 

r>a(t), pf(r,t)=+[r+ “,I:: ‘:@)]cose- I -- 

-ff=$fl a(t) a’(t) In --& $ p+(t) 

(4.3) 

I I 

r < a (t), pf’ (1, t) = + r cos e -y a (t)‘a’ (t) III* + PP @I 

The non-unique solvability of problem (2.6), (1.3) does not affect the velocity fields 
of the phases, because according to the original Eqs.tl.11 these fields are determined by the 
space derivatives of expressions (4.3). 

The pressure distribution of the fluid phase obtained in this way also satisfies the 
condition of constancy of the gradient of the function p,(r, t) far from the packet in the 
homogeneous layer and has no singularities in the internal flow region r< a(t). 

The equations of motion of the solid phase outside and inside the packet, as in the three- 
dimensional case, have a Cauchy-Lagrange integral. Using expressions (4.1) and (4.2), we find 
the pressure field of the dispersed phase in the entire flow region in the form 

r > a (11, ps (r, t) = r/.&p IUJ (t) - + (r, t)l - (4.4) 
&P&J, (r, Wt + pfm 0) + P$- - Pf (I, 4 

+ 4~ kWd' (t)lg + II gr 
r < a (t). A (r, t) =- pf' (I, 1) + 

d,p' r&U,' (t);g + 11 gr + pf- (t) + (W’a (t) a’ (t) In la (Q/L (t)l 
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The second relationship in (4.4) satisfies the condition .n,'(r, t) ],,,+-t 0, which has been 
previously used in (2.16). 

From the results of (4.3) and (4.4) it follows that the effect of an infinitely long 
cylindrical non-homogeneity on distant parts of the layer in the plane problem is more pro- 

nounced than in the three-dimensional case: the pressure perturbation in the fluid phase in 
the homogeneous layer logarithmically increases at infinity in the equatorial plane of the 
packet. Similarly, from the first equality in (4.4) we obtain that the pressure perturbation 
of the dispersed phase also logarithmically increases everywhere in the layer with distance 
from the packet. For a spherical packet occupying a bounded region, such pressure pertur- 

bations, on the contrary, are vanishingly small far from the packet. These pressure pertur- 

bations do not affect the flow fields of the phases at infinity because the velocities v,W 

are determined by the pressure gradients of the phases, whose values far from the packet, as 

in the three-dimensional case, correspond to the homogeneous layer: 

Thus, pt_ (t) and P,cc in the plane problem correspond to the pressure of the fluid phase 
in the equatorial plane 6=-&n/2 for its motion with velocity Ud (1) in the laboratory 

system and the pressure of the solid phase when there is no inhomogeneity in the layer. 
Now, relying on relationships (4.4) and expanding the corresponding expressions for the 

pressure discontinuity of the solid phase on the packet surface in the neighbourhood of frontal 
points in series by the Davies-Taylor method, we obtain a system of differential equations 
describing the evolution of a plane circular packet: 

$ UJ (t) + a.2 (t) (1 - A) [f + $ - *] ,. (4.5) 

The relationships L (Q is specified assuming that a packet whose density is equal to 

that of the surrounding layer remains immobile, i.e., u,(t)= 0 for h = 1. In this case, 

the second equation of system (4.5) is identically satisfied and from the first equation we 
have 

L(t) = a (t)exp [-A) (4.6) 

Using the equality (4.6), the equations describing the evolution of the packet are written 
in the form 

7lJ,z (t) - (h - 1)%‘2 (t) = 0 

(h + 1) U,' (t) a (t) -t 2Ud (t) a’ (t) + 4ud* (t) = 

T (h - 1) @ (0 

(4.7) 

From relationships (4.7) it follows that for packets with slowly varying velocity (so 
that Ui (t) <g) we always have Ud2 (t) - ga (t), which, in particular, is consistent with 

numerous experimental measurements of the velocity of bubbles in pseudofluidized systems /12, 
13/. 

In the limiting case when p=o (a bunch with particle density p' in a pure gas) we 
obtain from Eqs.(4.7) a* = 0, Ud' = g. The particle bunch preserves its size in this case and 
moves through the gas just like a falling body. 

System (4.7) can be investigated by the methods of the theory of non-linear oscillations. 
From the first equation of the system we obtain 

u,(t)=+,h-ll In’(t)l, Ud’ (t) = +, h - I / H (a’) a” (t) 

where H(a') is the Heaviside function. 
Substituting the expression for Ud (t) and Ud. (1: into the second equation of the 

system, we obtain the following autonomous second-order ordinary differential equation for the 
packet radius: 
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i Li 
- i-f (a’) a” (f) (1 (f) - +-, a. (f) 1 a’ (1) T -+- (h - I) a.*(t) = ga (f) vi (4.8) 

The upper sign, as usual, corresponds to rising packets (h< 1) and the lower sign to sinking 
packets (h> 1) 

The phase spaces (a,~') of Eq.(4.8) are bivalent: the evolution equations are different 
for growing packets (a' (t) > 0, H (a') = i) and dissolving packets (a'(l)<O, H(a')= --1) for any 
ratio of packet-to-layer densities. The halfline 0' zzz 0 in the phase space separates regions 
with different behaviour of the phase trajectories. 

As a result of this property, relation (4.8) can be represented as a system of equations 

! B* (h) = 
2[1/7f2(1- h)] g1/7 

ji7(1 IA) ’ a(h)= ,__x --I 

5. Integmtion of the equations describing packet evolution. Phase portraits. Consider 
the results obtained by integrating systems (4.9) and (4.10) separately for rising and sinking 
packets. 

Rising packet b<l. The phase trajectories of Eqs.(4.9) are described by one-parameter 
families of curves 

.m=G,a~~~~+;~a)l:I) a’>0 (5.1) 

"'(U)=-(C,~-2B--~ajl'g, a‘<0 

where Cn and c,, are the parameters of the respective families, and c,,> 0. 
The curves of the first family in (5.1) do not cross the axis for Cl, > 0 and cross it 

once for C,,<O. The parabola 

separates the subsets of phase curves of these two types. All trajectories of the second 
family in (5.1) start on the axis a'= 0 and monotonically approach the axis a=0 with time. 

The phase space of system(4.9) is shown in Fig.2. 
of continuous motion 

The phase trajectories in both regions 
n' > 0 and (I' < 0 are normal to the axis n' = 0 on the axis. The 

axis 0' = 0 is therefore a continuum of unstable states of rest of the phase point == Q. a,' = 
0 (aa1 and a,' are the initial values of the radius and the rate of change of the radius of 
a circular packet). The phase point (~,a') moves to one of the continuity regions as a result 
of any small deviation from the discontinuity line a'=0 in the phase space. In general /lo, 
14/, the phase point may continuously pass through such discontinuity curves or surfaces and 
also move along them in a stable or unstable ("sliding") manner. 

The phase point initially located in one of the regions a'>0 or 4.~0 thus remains 
in that region, i.e., the mass of a growing packet will continue to increase, while a dissolving 
packet will continue to lose mass due to the efflux of particles to the exterior layer. 

‘,, > 0 

Fig.2 

The growth region a'>0 is partitioned by the curve (5.2) 
into two subregions: a packet with initial state above this curve 
in the phase plane grows non-monotonically. Specifically, the 
rate of growth at first decreases (very rapidly for small 4,) to 

some minimum value and then starts increasing. If the initial 
state (ao. a,') lies on or below the parabola (5.2), the influx 
of the dispersed phase from the layer into the packet is monotonic. 

For a dissolving packet, a useful characteristic of mass 
transfer of the solid phase from the packet to the layer is the 
packet "lifetime", which is measured from the initial state a= a,,, 

Using the second relation in (5.1), we obtain 
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The corresponding value for a bubble is obviously T,(O). The improper integral I (V 
with a singularity at r=l converges by the Cauchy criterion, because the integrand for 
r-1 is of order g-'/s, where 5 = 1 -z. 

Sinking packet h> 1. Unlike the case of rising packets, the coefficient B+(h) is 
sign-alternating for sinking packets when a'<O. Specifically, B+(h)<0 for R>h, and 
B+ (h) > 0 for h<h,. where h,= 1 +l/'ji2. This alters the appearance of the phase trajectories 
depending on the relative density of the dissolving packet (a'<O). It is also necessary to 
allow for the singularity in the second relation in (5.1) associated with the multiplier i/(28++ 
1) for 2g++ 1 =O. which corresponds to h= h,,= (5I/s+ 8)/(8- flfl. 

In the upper phase halfplane, i.e., for growing packets, the appearance of the phase 
curves is similar to that in Fig.2. 

Below we describe the phase protraits of the second equation in (4.10) depending on the 
sign and magnitude of the coefficient b+(h) and also in the limiting cases B+ = 0, 8, = --Vs. 

10. B+(h)> 0, f <A< A*. The behaviour of the phase trajectories in the region a'<0 is 
similar to that described previously for rising packets. For the packet lifetime we have 
expression (5.3) with the change of variable B--b+. 

2". S+(h)= O,h=&. The phase trajectories in this region are described by a one-parameter 
family of parabolas: II' (a) = -(C,, - Zaa)"'. c,, > 0 is the parameter of the family. 

The corresponding phase portrait is shown in Fig.3a. For the time of complete dissolution 
of a packet we obtain from (5.3) for 8+=0 

30. 0> B+ (A) > --'L h, < h <A,,. The phase trajectories are described by the equality 

(c,, is a parameter). Each curve of this family crosses 
curves of the family pass through the origin. 

Fig.3 

the axis a' = 0 twice, and all the 

The location of the phase trajectories in the region a' < 0 is shown in Fig.3b. We see 
that in this case, contrary to the case fl+>O, the dissolution of the packet is non-monotonic. 
The velocity of the boundary a' at first increases (remaining negative) until it reaches a 
certain maximum value. Then it starts decreasing, and at the moment when the packet vanishes 
the velocity of its boundary is a'- 0 (it was finite or infinite in the previous cases S+= 0 
and iL> 0). For the dissolution time T, we still have expression (5.3) with B+(h) substituted 
for e: ix). 

40. 6+ (V = --‘/z, a = a**. In this limiting case, the family of phase curves has the form 

a' (a) = -7%"~ (C,, - 2u In a)'/% 

(G* is a parameter of the family). The qualitative behaviour of the phase trajectories is 
identical to that in case 3', with the sole difference that the parameter C, takes all 
values in the interval (-co,-) on the curves of the family. The packet lifetime is given by 
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The improper integral in this expression is convergent. 
5'. B+ (1) < -1/m ?” > J.,*. The phase curves of the second equation (4.10) are described by 

the relationship 

(C, is a parameter). The curves with C,>O cross the axis a. = 0 only at the origin. 
The curves of this family with C,,<O cross this axis twice, as in cases 3O and 4'. The 
curves of these two types are separated by the parabola 

0(n) = - &-a (Cn,= 0) 

The corresponding phase portrait is shown in Fig.3c. The velocity of the packet boundary 
at the moment of disappearance is zero, as in cases 3O and 4". The dissolution of the packet 
is monotonic or non-monotonic, depending on whether the phase point (a,a.) is initially below 
(and on) the separating curve C== 0 or above the separating curve. 

For the packet lifetime in this case we have 

1. 

2. 

3. 
4. 
5. 

6. 

I. 

A. 

9. 
10. 

11. 
12. 
13. 

14. 

REFERENCES 

30BKOV N.N. and GUPALO YU.P., Unsteady motion of local non-homogeneities in a pseudofluidized 
layer, PMM, 52, 3, 1988. 

BOBKOV N.N. and GUPALO YU.P., Packet mixing in a fluidized layer, Izv. Akad. Nauk SSSR, 
MZhG, 5, 1983. 

iEVICH V.G., Physico-Chemical Hydrodynamics, Fizmatgiz, Moscow, 1959. 
fIGMATULIN R-I., Dynamics of Multiphase Media, Nauka, Moscow, 1, 1987. 
XIPALO YU.P., POLYANIN A.D., and RYAZANTSEV YU.S., Mass and Heat Transfer of Particles 
Reacting with Fluid Flow, Nauka, Moscow, 1985. 

>AVIES R.M. and TAYLOR G., The mechanics of large bubbles rising through extended liquids 
and through liquids in tubes, Proc. Roy. Sot., A200, 1950. 

3UPALO YU.P., RYAZANTSEV YU.S., and SBRGEYEV YU.A., The growth of a bubble in a fluidized 
layer with non-linear interaction between phases, Izv. Akad. Nauk SSSR, MZhG, 6, 1977. 

BUYEVICH YU.A.,On the motion of bubbles in a pseudofluidized layer, Izv. Akad. Nauk SSSR, 
MZhG, 3, 1975. 

ANDRONOV A.A., VITT A.A. and KHAIKIN S.E., Theory of Oscillations, Nauka, Moscow, 1981. 
RUTENIN N.V., NEIMARK YU.I., and FUFAYEV N.A., Introduction to the Theory of Non-linear 
Oscillations, Nauka, Moscow, 1987. 
PAKHMATULIN KH.A., Gas and Wave Dynamics, Izd. MGU, Moscow, 1983. 
DAVIDSON J.F. and HARRISON D., (Eds.) Pseudofluidization, Kimiya, Moscow, 1974. 
YATES J., Fundamentals of the Mechanics of Pseudofluidization with Applications, Mir, 
Moscow, 1986. 
NEIMARK YU.I., The Point Mapping Method in the Theory of Non-linear Oscillations, Nauka, 
Moscow, 1972. 

Translated by Z.L. 


